日期:2023-01-13 阅读量:0次 所属栏目:高等教育
所谓的数据挖掘,具体指的就是在海量且模糊随机数据当中提取出隐含其中,同时具有潜在价值的信息与知识过程。将数据挖掘技术应用在教育教学当中,可以对海量数据予以深入挖掘与分析,进而获得数据当中所隐含的潜在信息内容,更好地为高校教育教学管理人员决策提供有力支持[1]。
二、高校教育教学管理中的数据挖掘技术应用
2.1在教学质量提升方面的应用
高等院校为了更好地提高教学管理的质量,教务管理部门会在学期期末测评学员领导与任课教师的教学思想、态度以及教学方法等,并且根据最终的评分结果来明确教师的教学质量。然而,受评价人员对标准理解以及把握程度的影响,学生评价仍存在随意性特征。在这种情况下,导致评分结果很难对教学效果进行真实地反映,因而也影响了教学质量的评估。但是,将数据挖掘技术应用在教学质量评估方面,通过对关联规则算法的合理运用,可以将教学质量评价当中的不同指标权重系数进行设定,并通过Apriori的算法来扫描数据集,在数据挖掘的作用下,获取学历、年龄以及职称三者之间存在的联系,同样也可以获得教学质量和方法的关系[2]。为此,高校教务管理部门就可以将获得的规律应用在教学管理实践当中,合理地设置督学小组并制定出听课制度,将教学课堂教学的质量真实且客观地反映出来,实现高校教学水平的全面提升。
2.2课程体系结构的有效完善
高等院校教育体系当中的专业建设作用十分重要,所以,必须要具备高质量的课程体系结构设置。在对学生成绩数据库以及毕业生去向数据库等多种数据信息进行数据挖掘以后,可以通过对关联分析与序列模式的分析和探究,获得数据与数据间存在的相关性。其中,课程间的关系和先后顺序亦或是课程和课程体系结构之间的关系等等。在此基础上,保证学习高级课程前事先学习先行课程。以计算机专业《数据结构》为例,在教学中将《C语言》作为重要的先行课程,以保证学生在学习《数据结构》内容的时候可以具备良好语言基础,更深入地理解并灵活地应用数据结构当中的算法。而在完成《数据结构》学习以后,应根据学生就业走向和市场的实际需求来确定是否安排《JAVA语言程序设计》课程教学。这样一来,学生的学习成绩实现了有效地提高,更利于学生未来就业。除此之外,对内容重复的课程进行有效地压缩,将落后的课程内容适当地删除,与专业特点相结合。由此可见,将数据挖掘技术应用在高校教学中,对于专业建设以及课程改革决策具有积极的作用。
三、网络教学中的数据挖掘技术应用
在网络教学中应用数据挖掘技术,可以从Web文件以及Web活动当中选择出用户较为感兴趣的有价值模式以及信息,这就是所谓的Web挖掘[3]。
因为接受教育对象在多个方面都存在差异,具体表现在个人学习目标、学习能力与知识基础的差异等。为此,网络教学也必须要能够适应个性化的学习需求。可以把不同用户学习状况与轨迹详细记录并存放至数据库当中,通过对WEB挖掘技术的合理运用,在序列模式挖掘的作用下合理地分类文档,以保证学生信息检索速度的提高。另外,也可以根据学生访问浏览的数据挖掘并分析,针对访问的数据展开聚类分析,以保证更好地了解学生感兴趣的内容,并为其推送相关内容。与此同时,可以在相关联的页面当中合理地设置超链接,对网站结构予以有效地改善,确保页面间的链接与用户访问的习惯更吻合。
结束语:总而言之,在高校教育教学中合理地运用数据挖掘技术可以在大量数据信息当中处理并提取出更具价值的信息内容,促进高等院校教育教学管理工作的正常开展,特别是评估与决策方面,数据挖掘技术的作用更为明显。除此之外,该技术也可以应用在网络教学当中,使得网络教学资源配置更加合理,在教育教学中充分发挥自身的效用。上文针对数据挖掘技术在高校教育教学中的实际应用展开了相关性地研究和分析,主要的目的就是为了更好地帮助高校进行决策,为学生提供更为理想的学习环境,在提高学生学习兴趣的基础上,增强高校教育教学的质量与效率。
本文链接:http://www.qk112.com/lwfw/jiaoyulunwen/gaodengjiaoyu/192752.html上一篇:高校休闲区铺装设计的应用及表达
下一篇:高校网络信息安全体系研究