欢迎光临112期刊网!
网站首页 > 论文范文 > 教育论文 > 教育管理 > 谈审题能力与推理能力的培养与提高

谈审题能力与推理能力的培养与提高

日期:2023-01-06 阅读量:0 所属栏目:教育管理


摘要:培养与提高小学生解决问题的能力应先从培养审题能力入手,再借助学具操作或画线段帮助思考,最后利用板书提高学生的推理能力,从而提高小学生解决问题的能力。

关键词:审题能力 操作 线段图 板书

根据多年的教学经验,我发现解决问题能力高的人成绩不会考得差,而解决问题能力低的人成绩肯定很差,学生成绩的高低是由解决问题的能力决定的。解决问题能力低的人,他应用知识的能力就差,他学了知识却无法应用到实际生活中去。学数学对他们来说失去了应有的意义。可见,培养解决问题的能力是重要的。据调查,有许多小学生解决问题的能力很差,这让老师和家长都很头疼。实际上解决问题的能力与审题能力及推理能力密不可分。所以,我们要重点培养学生的审题能力与推理能力。
   一、抓住关键词分析,弄清题目的含义,培养学生的审题能力
   读题与审题是解决问题的第一步,第一步出错的话,后面的列式、计算等就会白花力气。根据我对试卷及平时作业的分析,发现很多学生是因为不理解或不仔细,审错题意而扣掉整题的分数,这是相当可惜的。
   审题是重要的,因此首先要让学生多读题目,边读边想,仔细想,想明白,抓住关键词想。如六年级期中考试的一道应用题:题干已知烟筒的底面直径与高,第一个问题是求它的侧面积,第二个问题是求20个烟筒需用铁皮多少平方米。第一个问题,学生能正确解答,因为问题明确指出是求侧面积,而第二个问题,就有很多学生列错算式,都列成一个底面积与一个侧面积的和,再乘以20。因为弄不明白烟筒是什么样子的,他们不知道烟筒只有侧面一个面,教师讲解时只需对烟筒的形状作出解释,或从烟筒的作用引导学生猜出烟筒的样子,其余可放手让学生去做。
   其次,读题时要求学生弄清每句话的含义。题目已知哪些量,要求什么量,如问题是求表面积还是体积,是求速度还是时间,是求工作效率还是工作总量等等。只有审清题意,才有可能列出正确的算式。
   二、动手操作是提高推理能力的有效手段
   动手操作是学习数学的一种手段,运用操作可以把抽象的概念形象化、具体化,使生疏的问题熟悉化,有利于学生对数学的理解、体验,使学生运用数学的语言、符号进行表达和交流。虽然很多知识在上新课时就让学生动手操作过,但有些知识时间一久,学生可能又全忘了,如果结合动手操作进行某些知识的复习,可以提高复习的效率。
   如复习圆柱与圆锥的知识,已知等体积等底的圆柱与圆锥,圆柱的体积及底面直径,求圆锥的高时,学生很容易出错。我先让学生拿出等底等高的圆柱与圆锥进行观察操作,然后回答三个问题:(1)等底等高的圆柱的体积是圆锥的几倍;(2)等底等高的圆锥的体积是圆柱的几倍;(3)等底等高的圆柱的体积比圆锥的多几倍。再让学生思考等底等体积的圆柱与圆锥的高的关系。最后让学生做几道不同问题的题目进行巩固。
   线段图可以把题目形象化、直观化,帮助学生分析数量关系,找到解题的突破口。有些题目数量关系复杂,通过画线段图,观察线段图,能有效地培养学生的推理能力。否则很大一部分学生将会束手无策。可见,线段图是学生解题的好帮手。如:一个数,如果把它的小数部分扩大3倍,这个数是2.2,如果把它的小数部分扩大7倍,这个数是3.8,原来这个数是多少?让学生自由读题后画出线段图,师巡视,这样老师既能了解学生解读文本的能力,又能了解学生对哪几句不理解,以便教师有针对有重点地讲解。
   引导学生观察线段图,找出解题的突破口。如学生找不出,可适当引导,3.8与2.2的差等于哪个量的4倍?其余的就放手让学生去做。反馈时,鼓励学生寻找不同的方法,学生举手积极,兴致高涨,解题的方法多种多样。如果教师没有借助线段图,只让较好的学生口述解题思路,肯定有很多学生不理解,虽然学生最终也做对了,但可能只是一种模仿与记忆,他们的创造能力没有得到培养,思维能力只能是处于低级水平。
   解决问题实际上就是先去某情景当中,再抽象出数量关系,然后列式解答的一种思维过程。线段图是一种既能去某情景当中,又能让学生对数量关系一目了然的工具。线段图能把抽象的知识形象化,把复杂的数量关系简单化、直观化,是学生把生活内容数学化的一种工具,是学生解题的好帮手。所以,我们要培养学生遇到难题找线段图帮忙的好习惯。
三、板书思维过程是提高推理能力的有效途径
   通过对解决问题过程的反思,获得解决问题的经验。好学生思考得出的解题思路,后进生不一定一下子

就会明白,借助板书有利于他们学习思考,使他们有所提高。
   如上题解题方法多种多样,指名口述解题思路,师板书。
   第一种
   解:设它的小数部分为x,(7-3)x=3.8-2.2
   4x=1.6
   x=0.4
   2.2-(3-1)×0.4=1.4
   第二种
   (1)这个数的小数部分的4倍是几?
   3.8-2.2=1.6
   (2)这个数的小数部分是几?
   1.6÷(7-3)=0.4
   (3)这个数是几?
   2.2-(3-1)×0.4=1.4
   这道题的方法多种多样,还可以引导学生列出:
   3.8-0.4×(7-1)=1.4
   2.2-3×0.4+0.4=1.4
   3.8-0.4×7+0.4=1.4
   引导学生说说是怎样想的。
   让学生比较这几种方法,看哪一种简便,教师便把那种思维过程写完整。留一定时间给学困生吸收,这样做体现了面向全体,共同提高,使全体学生思维得到一定的发展。优等生思维更加灵活,能同时掌握好几种方法,而后进生至少也能掌握一种方法。
   复习解决问题这块知识时,用学具操作,借助线段图,把知识具体化;板书解题步骤,把知识抽象化。这样把具体与抽象结合,既能让学生掌握知识,又可开发智力,达到有效复习的目的。
   参考文献:
   [1]王小霞.“读”出数学的精彩.教学月刊,2005(11).
   [2]吕琴,蒋成荣.让操作实践从形式走向实质.教学月刊,2005(11).
   [3]于晓霞.对应用题教学的若干思考与做法.中小学数学,2007(6).
   [4]贾志强.提高分数应用题教学效率的好经验.中小学数学,2007(7/8).


本文链接:http://www.qk112.com/lwfw/jiaoyulunwen/jiaoyuguanli/49337.html

论文中心更多

发表指导
期刊知识
职称指导
论文百科
写作指导
论文指导
论文格式 论文题目 论文开题 参考文献 论文致谢 论文前言
教育论文
美术教育 小学教育 学前教育 高等教育 职业教育 体育教育 英语教育 数学教育 初等教育 音乐教育 幼儿园教育 中教教育 教育理论 教育管理 中等教育 教育教学 成人教育 艺术教育 影视教育 特殊教育 心理学教育 师范教育 语文教育 研究生论文 化学教育 图书馆论文 文教资料 其他教育
医学论文
医学护理 医学检验 药学论文 畜牧兽医 中医学 临床医学 外科学 内科学 生物制药 基础医学 预防卫生 肿瘤论文 儿科学论文 妇产科 遗传学 其他医学
经济论文
国际贸易 市场营销 财政金融 农业经济 工业经济 财务审计 产业经济 交通运输 房地产经济 微观经济学 政治经济学 宏观经济学 西方经济学 其他经济 发展战略论文 国际经济 行业经济 证券投资论文 保险经济论文
法学论文
民法 国际法 刑法 行政法 经济法 宪法 司法制度 法学理论 其他法学
计算机论文
计算机网络 软件技术 计算机应用 信息安全 信息管理 智能科技 应用电子技术 通讯论文
会计论文
预算会计 财务会计 成本会计 会计电算化 管理会计 国际会计 会计理论 会计控制 审计会计
文学论文
中国哲学 艺术理论 心理学 伦理学 新闻 美学 逻辑学 音乐舞蹈 喜剧表演 广告学 电视电影 哲学理论 世界哲学 文史论文 美术论文
管理论文
行政管理论文 工商管理论文 市场营销论文 企业管理论文 成本管理论文 人力资源论文 项目管理论文 旅游管理论文 电子商务管理论文 公共管理论文 质量管理论文 物流管理论文 经济管理论文 财务管理论文 管理学论文 秘书文秘 档案管理
社科论文
三农问题 环境保护 伦理道德 城镇建设 人口生育 资本主义 科技论文 社会论文 工程论文 环境科学