日期:2023-01-06 阅读量:0次 所属栏目:教育理论
摘 要:
关键词:
思维能力:指人们在工作、学习、生活中每逢遇到问题,总要“想一想”,这种“想”,就是思维。它是通过分析、综合、概括、抽象、比较、具体化和系统化等一系列过程,对感性材料进行加工并转化为理性认识及解决问题的。我们常说的概念、判断和推理是思维的基本形式。无论是学生的学习活动,还是人类的一切发明创造活动,都离不开思维,思维能力是学习能力的核心。现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。现谈谈初中学生数学思维的培养的几点尝试。
一、要善于调动学生内在的思维能力
课堂教学效率的优质、高效离不开全体学生的全程积极、有效参与。教师要努力创设主动探索空间,让学生有动脑思考、动手操作、动笔尝试、动口表达的解决问题和提出问题的时间与空间,使其外部活动逐渐内化为自身内部的思维活动,从而获取知识,发展智能,以更积极的姿态自主参与学习活动。首先要培养兴趣,促进思维。兴趣是最好的老师,也是每个学生自觉求知的内动力。教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使同学们认识到数学在四化建设中的重要地位和作用。其次要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。新教材中安排的“想一想”、“读一读”不仅能扩大知识面,还能提高同学的学习兴趣,是比较受欢迎的题材。适当分段,分散难点,创造条件让学生乐于思维。如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。因此,我在教列代数式时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极的分析思维。第三要鼓励学生独立思维。初中生受经验思维的影响,思维容易雷同,缺乏探索精神。因而要多鼓励学生敢于发表不同的见解。例如比较大小,用“<”号连接下列各数16/15、12/11、96/91、32/29,大部分同学都根据以往经验,利用通分,化为同分母进行比较,因而使计算量大,但也有一些聪明的学生已看出分子96分别是16、12、32的整数倍,只要使分子相同就可作比较。对这种同学应该赞扬与肯定,促进学生思维的广阔性。
二、要教会学生思维的方法
思维方法是人们通过思维活动为了实现特定思维目的所凭借的途径、手段或办法,也就是思维过程中所运用的工具和手段。思维方法属于思维方式范畴,是思维方式的一个侧面,是思维方式具体而集中的体现。思维方法是由诸层次、诸要素构成的复杂系统。按其作用范围的不同,可以把思维方法划分为三大层次:一般的思维方法、各门具体科学共同的思维方法和各门科学所特有的思维方法。“学而不思则罔,思而不学则殆”。恰当地示明学思关系,只有处理好这种关系,才能取得良好的效果。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。
课堂教学中要学生善于思维,重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
在例题课中要把解(证)题思路的发现过程作为重要的教学环节。不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力。学会从条件到结论或从结论到条件的正逆两种分析方法。对一个数学题,要能判断它是属于哪个范围的题目,涉及到哪些概念、定理、或计算公式。在解(证)题过程中尽量要学会数学语言、数学符号的运用。
三、要培养学生良好的思维品质
思维品质,实质是人的思维的个性特征。思维品质反映了每个个体智力或思维水平的差异,主要包括深刻性、灵活性、独创性、批判性和敏捷性五个方面。在学生初步学会如何思维和掌握一定的思维方法后,应加强思维能力的训练及思维品质的培养。
教学中要注意培养思维的条理性与敏捷性。根据解题目标,确定解题方向。要训练学生思维清晰,条理清楚,遇到问题能按一定顺序去分析、思考,对复杂问题应训练学生善于于局部到整体再从整体到局部的思维方法。学生在思维过程中,要能迅速发现问题和解决问题。
要注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例:a是什么数时,方程ax2-(2a+1)x+a=0有两个不相等的实数根?很多同学只注意由△=[-(2a+1)]2-4a·a>0,推得a>-14。而如果把a>-14作为本题答案那就错了,因为当K=0时,原方程不是二次方程。
在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练,还可改变条件进行“一题多变”和“多题一解”的训练。这是综合运用数学知识和方法提高解题能力的重要措施。培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。
当然,良好的思维品质不是一朝一夕就能形成的,但只要根据学生实际情况,通过各种手段,坚持不懈,持之以恒,就必定会有所成效。 本文链接:http://www.qk112.com/lwfw/jiaoyulunwen/jiaoyulilun/65684.html
下一篇:新课程标准下的历史教学研究