日期:2023-01-06 阅读量:0次 所属栏目:教育理论
“问题式”教学就是一种行之有效的方法,把课堂中所要达到的目的,按学生学习情况分成若干个问题,针对不同层次的学生,把知识点分解到各个不同层次的教学中,利用问题激发学生进行研究、探索,既能使学生主动参与到教学当中,又能开发学生探究能力。
一、提问是创新的开始
通过适时提问题,提好问题,给学生示范提问的方法,使他们领悟和发现提出问题的艺术,引导他们更加主动地学,富有探索性地学,逐步培养学生的问题意识,孕育创新精神。
例如,每一节的开篇尽量都以问题开始。以“观察”“思考”“探究”等栏目明确提出问题,引导学生的数学活动,使他们认真观察具体实例中反映的数量关系或几何特征,积极主动地开展实验与猜想,归纳与推理的活动,思考问题的本质,探究解决问题的方法,使学生通过自己的探索思维来概括熟悉概念,获得数学结论,多方寻求答案,解决疑问,领悟数学思想,理解数学本质。
二、学起于思,思源于疑
学生有了疑问才会进一步思考问题,才会有所发展,有所创造。在传统教学中,学生少主动参与,多被动接受;少自我意识,多依附性。学生束缚在教师、教材、课堂的圈子中,不敢越雷池半步,其创造性、个性受到压抑和遏制。因此,在新课改中提出“学生是教学的主人,教是为学生服务的”,通过设置具体的问题,使学生在课前积极地投入到预习中去,针对问题,分析答疑,对于难度稍大的问题,分组进行合作探究,集思广益,充分调动学生的积极性和主观能动性,使每个学生都参与到课堂中去,让学生真正成为课堂的主人。
三、问题式教学需要注意的几个方面
(一)全面了解学生,把握好教材
问题的设计是建立在了解学情,把握好教材的基础之上的,根据学情紧扣教学目的,将学习的重、难点分层设计成问题,从而激发学生的求知欲,问题的设计要在学生已经具备的基础知识的基础上诱导学生主动思考或用动手操作的方式取得问题的答案。
(二)问题的设计要有启发性
数学是思维的科学,思维从对问题的惊讶开始。首先要给学生思考的时间,不过思考时间的长短,是与问题的难易程度和学生实际水平密切相关的,更与教师设计问题是否具有启发性有关,要让学生短时间内回答正确,教师要做是适当的启发引导。而启发引导要遵循学生思维的规律,因势利导,循序渐进,不要强制学生按照教师提出的方法和途径去思考问题,甚至让学生大胆地猜想自己认为好的方法,用学生的思路去引导学生,顺其道而行之,帮助学生思考。
(三)问题的设计要有层次性
问题的设计要依据学生的认知水平,章节内容由浅入深,切合学生的思维流程,根据学生的基础不同,理解能力不同,思维方法也不同,因此问题可以有基本定义、定理到具体的思想方法,以及知识的迁移与推广,充分考虑让每个学生的思维都被触动,让每一位同学都体会到成功的喜悦,都积极地参与思考;从自学能够解决到共同合作探究进一步获得提升。因此在数学课堂学习中,教师要不断地向学生提出新的、深的数学问题,为更深入的数学思维运动提供动力和方向,使学生的数学思维活动持续不断向前发展。
四、问题式教学法的案例展示
教学内容:选修1—2,第二章《推理与证明》第一节第二部分内容“演绎推理”。
教学目标:
双基:在学习合情推理的基础上,结合数学实例和生活中的实例,体会演绎推理的重要性,了解演绎推理的含义,掌握演绎推理的基本形式,了解演绎推理和合情推理的联系和差异;
能力:通过学习,使学生能运用三段论进行一些简单推理,培养和提高学生的演绎推理或逻辑证明能力;
重点:了解演绎推理的含义,能利用“三段论”进行简单的推理;
难点:分析证明中包含的“三段论”形式;
学情了解:学生基础较差。
根据教学目标的要求,结合对学生的了解,特提出问题如下:
问一:什么是演绎推理?(在自学的基础上所有同学均能回答)
问二:演绎推理与合情推理有什么区别?你可以从推理形式上分析。(启发学生回答问题的方向,并引出接下来的重点,演绎推理的基本形式“三段论”)
问三:请同学们再观察教材引例,分析它们由几部分组成,各部分有什么特点?
(教师引导学生观察、引导、总结,从而得出“三段论”是演绎推理的一般模式,并启发学生分析“三段论”的特征及相互联系,从而解决学习重点)
问四:你能举出一些用“三段论”推理的例子吗?
(学以致用,深入理解“三段论”)
问五:观察例1的证明过程,思考与我们平时的证明过程有什么不同?
(教师引导学生分析证明中包含的“三段论”形式,从而突破学习难点)
问六:由前几节的学习我们知道合情推理的结果不一定正确,又通过前面例题的分析学习,你认为演绎推理的结论一定正确吗?
(引导学生分组合作,共同探索,列出表格比较两种推理,使学生进一步认识它们各自的特点和相互联系,要让学生不仅会证明,也要会猜想)
上一篇:激发学生地理学习兴趣的特征
下一篇:高中语文教学中的情感教育的方式