欢迎光临112期刊网!
网站首页 > 论文范文 > 教育论文 > 师范教育 > 让数学复习课充满生长的力量的发展策略

让数学复习课充满生长的力量的发展策略

日期:2023-01-06 阅读量:0 所属栏目:师范教育


 一线教师常常感叹数学复习课难上。它既没有新授课的新鲜感,又没有练习课的成功感,所以往往被异化成“做题课”或“复述课”。事实上,复习只是数学学习“链条”中的重要一环,是数学认知过程中短暂的“驻足”,除了“回顾过去”,更要“面向未来”。所谓“面向未来”,就是要让数学复习课充满生长的力量——生长知识、技能、思维、智慧等,让学生在自我评价、自我反省中温故知新,提升自我。
  一、问题梳理,让学生生长数学结构
  对分散、静态的知识点回顾梳理,形成线状的数学认知结构,是数学复习课的重要任务之一。随意性的一问一答式“零敲细打”、或放任自由的“信马游缰”,都难以让学生发现、沟通知识之间的内在联系,更无法经历知识网络的生长之旅。因此,在单元整理和复习中,应注意以问题为生长点,通过任务驱动和问题解决,有效地把所要复习的知识串联起来,让学生主动生成具有生长力的知识结构。
  如,复习六年级上册第四单元“圆”时,教师以“请你介绍圆”为主线,提出如下一系列问题:
  问题一:“在这张纸上画一个最大的圆,怎样找出它的圆心与直径?”“如果让你介绍这是一个怎样的圆,怎么办?”学生通过讨论,提出了重合对折、直尺移动、外接正方形再连对角线等多种方法。
  问题二:“圆的各部分之间有什么关系?谁来介绍一下?”让学生进一步沟通直径与半径之间的关系。
  问题三:“圆的周长、面积公式是怎样推导出来的?”让学生交流再现圆的相关计算公式的推导过程。
  问题四:“半径是2厘米的圆,它的周长与面积相等,对吗?”引导学生对“争议”问题讨论,深化认识,破解难点。
  上述复习教学中,通过“用学过的知识介绍这是一个怎样的圆”这一核心任务作驱动,围绕一系列核心问题互动交流,引导学生在经历多方对话、多维思考和多向反思的过程中,理清圆相关知识的来龙去脉,形成一个整体的认知结构,使原本散乱的知识串成链,连成片,结成网,培养了学生“窥一木而见森林”的回顾梳理能力。
  二、专项训练,让学生生长数学技能
  弥补缺漏,温故知新,是数学复习课的又一重要任务。教师要针对学生在单元学习中的认知难点、盲点、冷点,精设专项练习,让学生不仅“习旧”,而且“知新”,主动生长新的知识技能,促进认知水平的提高。这就要求教师在复习习题的设计中,不能简单地重复“炒旧饭”,而应精选典型习题,一题多练,一题多用,旧中生新,促进学生对知识的更高水平建构。
  如,复习“小数除法”时,出示以下习题让学生列竖式计算:(1)6.3÷0.75 (2)2.73÷0.13 (3)0.12÷0.5然后组织如下训练:
  1.议一议:6.3÷0.75得8,余数是30还是0.3?为什么?如何根据商的变化规律进行验证?引导学生深入理解和牢固掌握小数除法中余数的处理技巧,有利于学生化解难点,夯实小数除法计算技能。
  2.用一用:计算2.73÷0.13,根据是什么?(商不变的规律)根据2.73÷0.13=21这一条件,很快说出下列各题的结果。(1)2.73÷13;(2)0.21×0.013;(3)0.■273÷0.■13等,通过一题多用,让学生进一步明晰强化小数除法的算理。
  3.变一变:“用商不变的规律计算0.12÷0.5,商是0.24,还有别的算法吗?”从而让学生提出可以把被除数和除数同时乘上2,即0.12÷0.5=(0.12×2)÷(0.5×2)=0.24等另类简便算法。然后让学生用一题多算方法计算0.12÷0.25,0.12÷0.125等习题,感悟转化的数学思想。
  上述教学中,以三道典型习题为依托,在列式计算的基础上,通过议一议、用一用、变一变等拓展训练,有效帮助学生扫除小数除法的计算障碍,让学生对小数除法的计算算理理得清,计算难点破得深,计算方法用得活,特别是通过第3题的拓展训练,让学生跳出单元知识框框,在不变中求变,感悟转化的数学思想方法,培养了学生的灵活计算能力。
  三、变式导联,让学生生长数学思想
  对于数学复习而言,除了回顾数学知识的本义外,还要进行意义的沟通、运用的拓展和思维的提升。让学生感悟数学思想、数学学习的策略方法等,有利于学生对数学知识技能的融会贯通,举一反三。这就要求教师在组织复习时,不能仅满足于“知其表”,更要“究其里”,既要重视常规练习,也要注意变式训练,引导学生挖掘知识技能背后的思想方法,把握数学知识的内在灵魂。
  如,复习“多边形的面积”时,让学生亲身经历如下数学活动,在“变式”中揭示图形之间的内在联系,领悟数学思想方法。
  1.计算面积:方格图呈现上底3分米,下底5分米,高2分米的梯形,让学生计算出梯形的面积。
  2.想象探究:能否把梯形想象成三角形、平行四边形,利用梯形面积公式推导出三角形、平行四边形面积计算公式。
  3.课件演示:教师利用课件动态演示梯形上底(或下底)慢慢缩短,两腰上端(或下端)逐渐靠拢成三角形以及梯形上底(或下底)慢慢延长(或缩短)逐渐形成平行四边形的过程。让学生发现平行四边形、三角形和梯形之间的内在联系。4.反思内省:原来平行四边形、三角形和梯形的面积计算方法是相通的,都可以统一用梯形的面积公式计算。
  上述复习教学中,以梯形为纽带,在计算面积、想象探究的基础上,教师充分利用课件动态演示梯形上底(或下底)的变化过程,使静止的图形动起来,在运动变化的过程中,学生不仅沟通了平行四边形、三角形和梯形之间的内在联系,而且在观察、比较和思考中,领悟到量的守恒、变与不变、转化等数学思想方法,有效帮助学生积累和提升策略性、方法性经验。
  总之,“让数学复习课充满生长的力量”是一种理念,更是一种信念;是一种境界,也是一种行动。它超越当下,穿越时空,能给数学学习带来无限生机与活力

本文链接:http://www.qk112.com/lwfw/jiaoyulunwen/shifanjiaoyu/100072.html

论文中心更多

发表指导
期刊知识
职称指导
论文百科
写作指导
论文指导
论文格式 论文题目 论文开题 参考文献 论文致谢 论文前言
教育论文
美术教育 小学教育 学前教育 高等教育 职业教育 体育教育 英语教育 数学教育 初等教育 音乐教育 幼儿园教育 中教教育 教育理论 教育管理 中等教育 教育教学 成人教育 艺术教育 影视教育 特殊教育 心理学教育 师范教育 语文教育 研究生论文 化学教育 图书馆论文 文教资料 其他教育
医学论文
医学护理 医学检验 药学论文 畜牧兽医 中医学 临床医学 外科学 内科学 生物制药 基础医学 预防卫生 肿瘤论文 儿科学论文 妇产科 遗传学 其他医学
经济论文
国际贸易 市场营销 财政金融 农业经济 工业经济 财务审计 产业经济 交通运输 房地产经济 微观经济学 政治经济学 宏观经济学 西方经济学 其他经济 发展战略论文 国际经济 行业经济 证券投资论文 保险经济论文
法学论文
民法 国际法 刑法 行政法 经济法 宪法 司法制度 法学理论 其他法学
计算机论文
计算机网络 软件技术 计算机应用 信息安全 信息管理 智能科技 应用电子技术 通讯论文
会计论文
预算会计 财务会计 成本会计 会计电算化 管理会计 国际会计 会计理论 会计控制 审计会计
文学论文
中国哲学 艺术理论 心理学 伦理学 新闻 美学 逻辑学 音乐舞蹈 喜剧表演 广告学 电视电影 哲学理论 世界哲学 文史论文 美术论文
管理论文
行政管理论文 工商管理论文 市场营销论文 企业管理论文 成本管理论文 人力资源论文 项目管理论文 旅游管理论文 电子商务管理论文 公共管理论文 质量管理论文 物流管理论文 经济管理论文 财务管理论文 管理学论文 秘书文秘 档案管理
社科论文
三农问题 环境保护 伦理道德 城镇建设 人口生育 资本主义 科技论文 社会论文 工程论文 环境科学