欢迎光临112期刊网!
网站首页 > 论文范文 > 教育论文 > 数学教育 > 例谈不等式恒成立中参数范围的确定

例谈不等式恒成立中参数范围的确定

日期:2023-01-06 阅读量:0 所属栏目:数学教育


论文导读::例谈不等式恒成立中参数范围的确定,初中数学论文。
论文关键词:例谈不等式恒成立中参数范围的确定

  确定恒成立不等式中参数的取值范围,常需灵活应用函数与不等式的基础知识在两者间进行合理的交汇,因此此类问题属学习的重点;然而,怎样确定恒成立不等式中参数的取值范围?课本中从未论及,但它却成为近年来命题测试中的常见题型,因此此类问题又属学习的热点;在确定恒成立不等式中参数的取值范围时,需要在函数思想与数形结合思想指引下,灵活地进行代数变换、综合地运用所学知识初中数学论文,方可取得较好的解题效果,因此此类问题的求解当属学习的难点.笔者试对此类问题的求解策略与方法作一提炼总结.
  一、不等式解集法
  不等式在集合A中恒成立等价于集合A是不等式解集B的子集;通过求不等式的解集并研究集合间的关系便可求出参数的取值范围.
  例1 已知时,不等式|x2-5|<4恒成立,求正数a的取值范围.
  解 由;由| x2-5 | < 4得1< x2< 9,-3 < x <-1或1 < x < 3.记A =, B = (-3,-1)∪(1, 3), 则AB.∴-3 ≤<≤-1(无解)或1≤<≤3,∴0< a≤,故正数a的取值范围(0, ].
  二、函数最值法
  已知函数f(x)的值域为 [m, n],则f (x)≥a恒成立f (x)min≥a,即m > a;f (x) ≤a恒成立n≤a.据此,可将恒成立的不等式问题,转化为求函数的最大、最小值问题.
  例2 若不等式2x-1 > m (x2-1)对满足-2≤m≤2的一切m都成立,求实数x的取值范围.
  分析 若将原问题转化为集合[-2, 2 ]是关于m的不等式(x2-1) m<2x-1的解集的子集,则解不等式需分类讨论.若今f (m) = (x2-1) m- (2x-1),则可将问题转化为f (m)在[-2, 2 ]上的最大值小于零,而f (m)是“线性”函数初中数学论文,则最值在区间端点处取得,便有如下简解.
  解 令 f(m) = (x2-1) m-(2x-1), 则 f (m) < 0 恒成立 f (m)max< 0
   ,解之得,即x 的取值范围为(,).
  例3 若不等式x2-m(4xy-y2) + 4m2y2≥0对一切非负的x, y值恒成立,试求实数m的取值范围.
  解 若y = 0,则原不等式恒成立;若y≠0,则原不等式可化为
  ≥0;令t =,则t≥0且g(t) = t2-4mt + m + 4m2≥0.问题转化为二次函数g(t)在区间[0,+∞)上的最小值非负.
  故有 或 .解得m的范围为(-∞, -] ∪[0,+∞) .
  说明 二次函数的图象与性质是中学数学中的重点内容,利用二次函数在区间上的最值来研究恒成立问题,可使原本复杂的问题变得易于解决.
  三、参数分离法
  将参变元与主变元从恒不等式中分离,则在求函数最值时可避免繁冗的分类讨论,从而更好地实施“函数最值法”.
  例4 若不等式2x + 2≤a (x + y) 对一切正数x, y恒成立,求正数a的最小值.
  解 参数分离,得a≥= f (x, y).∵x +3y≥2,∴3 (x+y)≥2x + 2,∴f(x, y) ≤3初中数学论文,∴a≥f (x, y)max=3,∴a的最小值为3.
  例5 奇函数 f(x)是R上的增函数,若不等式f (m·3x) + f (3x-9x-2) < 0对一切实数x恒成立,求实数m的取值范围.
  解 ∵f(x)为奇函数,∴原不等式等价于:f (m·3x)< f(3x-9x-2),又f(x)在R上为增函数,∴m·3x<3x-9x-2,不等式两边同除以3x,得m<3 x +-1= f (x).
  ∵3 x +≥2,当且仅当3 x =时取“=”,∴f (x)min =2-1,故所求m的取值范围为(-∞, 2-1).
  说明 (1)在求解本例时,若无分离参数的求简意识,则必转化为含参二次函数在区间上的最值问题,不可避免地要进行分类讨论.
  (2)诸多数学问题在通过代数变形后均可转化为形如f (x) = ax+型函数的最值问题,其最值的求解通常用重要不等式或函数单调性来完成.
  四、数形结合法
  将恒成立的不等式问题,合理转化为一函数图像恒在另一函数图象的上(下)方初中数学论文,进而利用图形直观给出问题的巧解.
  例6 若不等式 3 | x + a |-2x + 6 > 0 在R中恒成立,求实数a的取值范围.
  解 尝试前述方法均较麻烦,而将原不等式变为
  | x + a | >x-2,令f (x) = | x + a |,g(x) =x-2,作
  出它们的图象如右图所示,便有-a < 3即a >-3,所
  求范围为(-3,+∞) .
  综上所述,求恒成立不等中参数的取值范围固然有四类彼此相联的思考方法,但是,只有在函数思想的指导下,树立数形结合与参数分离的求简意识,面对具体问题时才能取得良好的解题效果.
 

本文链接:http://www.qk112.com/lwfw/jiaoyulunwen/shuxuejiaoyu/96867.html

论文中心更多

发表指导
期刊知识
职称指导
论文百科
写作指导
论文指导
论文格式 论文题目 论文开题 参考文献 论文致谢 论文前言
教育论文
美术教育 小学教育 学前教育 高等教育 职业教育 体育教育 英语教育 数学教育 初等教育 音乐教育 幼儿园教育 中教教育 教育理论 教育管理 中等教育 教育教学 成人教育 艺术教育 影视教育 特殊教育 心理学教育 师范教育 语文教育 研究生论文 化学教育 图书馆论文 文教资料 其他教育
医学论文
医学护理 医学检验 药学论文 畜牧兽医 中医学 临床医学 外科学 内科学 生物制药 基础医学 预防卫生 肿瘤论文 儿科学论文 妇产科 遗传学 其他医学
经济论文
国际贸易 市场营销 财政金融 农业经济 工业经济 财务审计 产业经济 交通运输 房地产经济 微观经济学 政治经济学 宏观经济学 西方经济学 其他经济 发展战略论文 国际经济 行业经济 证券投资论文 保险经济论文
法学论文
民法 国际法 刑法 行政法 经济法 宪法 司法制度 法学理论 其他法学
计算机论文
计算机网络 软件技术 计算机应用 信息安全 信息管理 智能科技 应用电子技术 通讯论文
会计论文
预算会计 财务会计 成本会计 会计电算化 管理会计 国际会计 会计理论 会计控制 审计会计
文学论文
中国哲学 艺术理论 心理学 伦理学 新闻 美学 逻辑学 音乐舞蹈 喜剧表演 广告学 电视电影 哲学理论 世界哲学 文史论文 美术论文
管理论文
行政管理论文 工商管理论文 市场营销论文 企业管理论文 成本管理论文 人力资源论文 项目管理论文 旅游管理论文 电子商务管理论文 公共管理论文 质量管理论文 物流管理论文 经济管理论文 财务管理论文 管理学论文 秘书文秘 档案管理
社科论文
三农问题 环境保护 伦理道德 城镇建设 人口生育 资本主义 科技论文 社会论文 工程论文 环境科学