欢迎光临112期刊网!
网站首页 > 论文范文 > 教育论文 > 学前教育 > Matlab在数字信号处理课程教学中的应用

Matlab在数字信号处理课程教学中的应用

日期:2023-01-23 阅读量:0 所属栏目:学前教育


  中图分类号:TP37 文献标识码:A 文章编号:1009-3044(2016)09-0241-02

  Application of MATLAB in Digital Signal Processing Teaching

  CHENG Jun

  (College of Physical and Information Science, Hunan Normal University, Changsha 410081, China)

  Abstract: Digital signal processing is a subject with strong theory and great difficulty in teaching and learning. Matlab has powerful signal processing function. This paper gives an example of using DFT to analyze the spectrum of continuous non periodic signals.Analyzing examples by Matlab simulation in teaching not only can improve the students' interest in learning, help students better understanding the principles and related concepts, and still can improve students' ability analysis to analyze and solve problems.

  Key words: digital signal processing; DFT; spectrum analysis

  《数字信号处理》是通信专业和电子技术专业的专业基础课。该课程介绍了数字信号处理的基本理论、基本概念和基本方法,主要讨论了时域离散信号和系统的时域和频域分析、离散傅里叶变换及其快速算法、IIR和FIR数字滤波器的设计。使学生掌握离散系统处理连续信号,利用DFT对信号进行谱分析,数字滤波器的设计和实现。为进一步学习有关通信、电子技术等方面的课程打下良好的基础。

  本文以采用DFT分析连续非周期信号的频谱为教学实例,对Matlab在数字信号处理教学中的仿真应用进行探讨。由于连续非周期信号x(t)的频谱是连续函数,需要对其进行时域和频域的离散化处理以近似分析对应的频谱,掌握整个过程中出现的现象是该门课程的一个难点内容,通过Matlab仿真将频谱分析现象运用图形来讲解,便于学生理解其物理含义,从而达到事半功倍的教学效果。

  1 混叠现象

  对于连续信号x(t),DFT计算出的频谱是连续信号频谱周期化后在[0,2π)范围的抽样值,如果抽样频率不满足抽样定理,或者连续信号不是带限信号,就会出现信号频谱的混叠。 对连续信号[xt=e-1000t],在10-5精度下,x(t)为fmax=2000Hz的带限信号,若取时间段t≤|0.05|s,Δt=5*10-5时间间隔时,可在Matlab中产生平滑的时域波形和频谱图,对该连续信号进行时域抽样,分别选择抽样频率为fsam=1kHz、5kHz,所得频谱如图1(a)所示。从图可见fsam=1kHz时出现严重频谱混叠,fsam=5kHz时没有出现频谱混叠。

  对x(t)信号采用fsam=5000Hz、1000Hz频率抽样后的时域离散序列x1[k]和x2[k]分别采用sinc和3次样条内插函数重构x(t),如图1(b)所示,对于x1[k]采用sinc函数和3次样条函数时重构信号与原信号的最大误差分别为0.0363和0.0317,说明重构的精度相当不错。对于x2[k]采用sinc函数和3次样条函数时重构信号与原信号的最大误差分别为0.1852和0.1679,说明重构的误差很大,这时已不能从x2[k]中恢复原信号x(t)了。

  2 泄漏现象

  如果连续信号x(t)时域无限长,则离散化后的序列x[k]也是无限长,需要进行加窗截短处理后成为有限长序列才能进行DFT分析。考虑x(t)=cos2πft,f=200Hz,以抽样频率fsam=600Hz对该信号进行抽样,并分别用N=32和64的矩形窗分别进行截短,将N点截短信号补0后做512点DFT分析,结果如图2(a)所示。从图可见,加窗处理对频谱分析造成了两个影响:频谱中出现了多余的频率分量,称为频率泄漏。谱线变成了具有一定宽度的谱峰,谱峰的宽度与信号的长度成反比。针对影响,比较图2(a)中N=32和64点情况,增加窗口的长度N并不能减少频率泄漏,必须通过选择不同的窗函数来改善。图2(b)采用汉明窗对无限长序列进行N=32和64点的截短处理再补零做512点的DFT变换,可见旁瓣泄漏大大减少了。对于影响,可通过增加窗口的长度N来减少主瓣宽度,从而改善频率分辨率。考虑x(t)=cos2πf1t+0.15cos2πf2t,f1=100Hz,f2=150Hz,以抽样频率fsam=600Hz对该

  信号进行抽样,分别用矩形窗和汉明窗取N=25和50点进行截短,通过补零进行512点的

  

  DFT结果如图3所示。可见矩形窗旁瓣泄漏大,难以检测幅度较小的频率分量f2,因而采用汉明窗,当N=25时,频率分辨率低,仍难以检测f2,当N=50时,频率分辨率提高,能很清楚显示出幅度较小的频率分量。3 栅栏现象

  对连续信号进行时域抽样和加窗处理后得到有限长序列,利用N点的DFT计算有限长序列的频谱也是长度为N的序列,实际上是周期化后的连续频谱在[0,2π)范围内的等间隔采样。由于频谱是离散序列,因而无法反映抽样点之间的频谱细节,导致了栅栏现象。栅栏现象是利用DFT对连续信号谱分析中无法克服的现象。考虑x(t)=cos2πf1t+cos2f2t, f1=100Hz, f2=120Hz,以抽样频率fsam=600Hz对该信号进行抽样,用长度为30点的矩形窗进行截短处理,通过补零进行32点和128点的DFT结果如图4所示。通过比较可知补零减小了频谱分析时的谱线间隔,使计算出的频谱出现更多的细节,随着补零的增加,显示的频谱信息也更多。

  在教学过程中,通过Matlab设计具体的仿真实例,运用图形化的方式来讲解抽象的理论知识和技术理论,使学生更好的理解数字信号处理课程中的概念和设计方法,从而提高学生的应用能力。

本文链接:http://www.qk112.com/lwfw/jiaoyulunwen/xueqianjiaoyu/222042.html

论文中心更多

发表指导
期刊知识
职称指导
论文百科
写作指导
论文指导
论文格式 论文题目 论文开题 参考文献 论文致谢 论文前言
教育论文
美术教育 小学教育 学前教育 高等教育 职业教育 体育教育 英语教育 数学教育 初等教育 音乐教育 幼儿园教育 中教教育 教育理论 教育管理 中等教育 教育教学 成人教育 艺术教育 影视教育 特殊教育 心理学教育 师范教育 语文教育 研究生论文 化学教育 图书馆论文 文教资料 其他教育
医学论文
医学护理 医学检验 药学论文 畜牧兽医 中医学 临床医学 外科学 内科学 生物制药 基础医学 预防卫生 肿瘤论文 儿科学论文 妇产科 遗传学 其他医学
经济论文
国际贸易 市场营销 财政金融 农业经济 工业经济 财务审计 产业经济 交通运输 房地产经济 微观经济学 政治经济学 宏观经济学 西方经济学 其他经济 发展战略论文 国际经济 行业经济 证券投资论文 保险经济论文
法学论文
民法 国际法 刑法 行政法 经济法 宪法 司法制度 法学理论 其他法学
计算机论文
计算机网络 软件技术 计算机应用 信息安全 信息管理 智能科技 应用电子技术 通讯论文
会计论文
预算会计 财务会计 成本会计 会计电算化 管理会计 国际会计 会计理论 会计控制 审计会计
文学论文
中国哲学 艺术理论 心理学 伦理学 新闻 美学 逻辑学 音乐舞蹈 喜剧表演 广告学 电视电影 哲学理论 世界哲学 文史论文 美术论文
管理论文
行政管理论文 工商管理论文 市场营销论文 企业管理论文 成本管理论文 人力资源论文 项目管理论文 旅游管理论文 电子商务管理论文 公共管理论文 质量管理论文 物流管理论文 经济管理论文 财务管理论文 管理学论文 秘书文秘 档案管理
社科论文
三农问题 环境保护 伦理道德 城镇建设 人口生育 资本主义 科技论文 社会论文 工程论文 环境科学