欢迎光临112期刊网!
网站首页 > 论文范文 > 教育论文 > 学前教育 > 由实变函数中几道题目引出的教学思考

由实变函数中几道题目引出的教学思考

日期:2023-01-24 阅读量:0 所属栏目:学前教育


  实变函数是基础数学的一个重要组成部分,在整个数学大厦中占据着重要位置,具有知识面广、抽象性和综合型强等特点,并且由于内容相对枯燥,理论性较强,导致学生产生厌学、抵触情绪,使得教学效果不佳。一个重要体现便是学生在做题目时,感觉无从下手,对此,教师应在平时的教授过程中多一些点拨,特别是对某些定理的证明方法和技巧,要多加提醒和点评,让学生知道证明思路,掌握证明技巧。下面我们就实变函数中的几道题目进行分析,来说明教师在授课过程中关于证明思想介绍的重要性。

  例1 证明:若E可测,则对任意ε>0,恒有开集G及闭集F,使FEG,而m(G-E)<ε,m(E-F)<ε。

  分析:此题是学生学了测度论这一章之后的一个练习,主要考查学生对可测集几个性质的掌握程度。主要应用集合运算的性质,可测集的补集仍然是可测集及可测集合的运算性质等进行证明。学生如果掌握了这些,按照题目的已知条件,应该能够顺利证明出来。

  证明:(1)当mE<∞时,对ε>0存在一列开区间{Ii},i=1,2,…,使∪∞i=1IiEi,且∑∞i=1|Ii|

  因此,mG-mE<ε,即m(G-E)<ε。

  (2)当mE=∞时,E可表为可数个互不相交有界可测集的并,即E=∪∞n=1En(mEn<∞)。对每个En应用上述方法可得开集Gn,使GnEn且m(Gn-En)<,令G=∪∞n=1Gn,则G为开集,GE且G-E=∪∞n=1Gn-∪∞n=1En=(∪∞n=1Gn)∩(∪∞n=1En)=∪∞n=1(Gn-∪∞n=1En)∪∞n=1(Gn-En)。

  因此m(G-E)≤∪∞n=1m(Gn-En)<ε。

  下证m(E-F)<ε

  当E可测时,Ec可测,则类似于前面的证明,存在有界开集G,使GEc,且m(G-Ec)<ε,因为G-Ec=G∩(Ec)c=G∩E=E∩G=E∩(Gc)c=E-Gc。令F=Gc,则F为闭集且m(E-F)=m(G-Ec)<ε。证毕。

  例2 若f(x)是定义在R上的连续函数,则E={(x,y): y=f(x)}和F={(x,y):y≤f(x)}是R2中的闭集;而G={(x,y):y

  分析:此题是在学完点集后的一个应用,主要考察开集和闭集的定义。教师在课堂上应向学生详细介绍开集与闭集的具体定义及其具体含义,或者说是集合意义,使学生知道开集、闭集、紧集之间的关系。如果学生掌握了这些,那么本题便易于证明,主要应用定义完成证明。

  证明:

  (1)(x0,y0)∈E′,则存在(xn,yn)∈E,使得(xn,yn)→ (x0,y0),(n→∞),而f(xn)=yn。由f连续性知f(x0)=y0,即(x0,y0)∈E,故E为闭集。同理可证F为闭集。

  (2)(x0,y0)∈G′,则0

  U((x0,y0),δ)G,从而(x0,y0)∈E′,即G是开集。

  例3 试证鲁津定理的逆定理成立。

  分析:针对此题,我们首先要了解鲁津定理的内容,在完全了解鲁津定理内容之后,才能进一步推导出其逆定理的内容。因此,在课堂上,对于此类定理的讲解应尽可能的细致,使学生知其然,更知其所以然。对于本题,我们首先需要写出逆定理的内容,再根据内容进行证明即可。

  鲁津定理逆定理:设f(x)为E上函数,δ>0,存在闭子集EδE使f(x)在Eδ上是连续函数。且m(E-Eδ)<δ,则f(x)是E上a.e.有限可测函数。

  证明:对_1n,存在闭子集EnE,使得f(x)在En上连续,且m(E-En)<_1n 。

  令E0=E-∪∞n=1En,则对n,有mE0=m(E-∪∞n=1En)≤m(E-E0)<_1n →0,n→∞,从而可得mE0=0。令E=(E-E0)∪E0=∪∞n=1En。

  对任意实数a,E[f>a]=E0[f>a]∪(∪∞n=1En(f>a)),由f在En上连续,故En[f>a]可测。而m*E0[f>a]≤m*E0=0所以E0[f>a]可测,进而f在E上可测。

  f在En上有限,从而在∪∞n=1En上有限,所以f(x)是E上a.e.有限可测函数。

  例4 设A是平面上以有理数点(即坐标都是有理数)为中心,有理数为半径的圆的全体,则A是可数集。

  分析:此题考查学生对可数集及其性质掌握的程度。在介绍可数集及其性质时,教师应让学生重点掌握可数集的定义,并用举例的方法使学生对可数集的概念加强了解,并对至多个可数集仍是可数集等性质进行推理论证,使学生明白之间的关系,那么这道题目就很容易得到解决。由于一个圆可看成由圆心和半径确定的,圆心可由一对坐标表示,半径由非负有理数表示,因此,可从此处入手完成证明。

  证明:A中的圆,由三个独立记号决定:(x,y,r),其中(x,y)为圆心,r为半径x,y各自跑遍有理数,r跑遍大于0的有理数,由有理数集是可数集可知大于0的有理数集是有理数集,从而(x,y,r)对应的圆的全体是可数集。

  通过上面几个例题的分析,我们可以看到对于实变函数这门课程解题的一些重要技巧和方法都是在对基础知识熟练掌握基础上才能够实现的,这就需要教师在教授过程中注重这些公式、原理的理论分析与证明,尤其要强调其中的具体思路和方法,使学生在思考的过程中充分理解这些定义、定理的深刻内涵。这样,才能够使学生在解题时有下手之处,利用掌握的知识去处理问题。

本文链接:http://www.qk112.com/lwfw/jiaoyulunwen/xueqianjiaoyu/235285.html

论文中心更多

发表指导
期刊知识
职称指导
论文百科
写作指导
论文指导
论文格式 论文题目 论文开题 参考文献 论文致谢 论文前言
教育论文
美术教育 小学教育 学前教育 高等教育 职业教育 体育教育 英语教育 数学教育 初等教育 音乐教育 幼儿园教育 中教教育 教育理论 教育管理 中等教育 教育教学 成人教育 艺术教育 影视教育 特殊教育 心理学教育 师范教育 语文教育 研究生论文 化学教育 图书馆论文 文教资料 其他教育
医学论文
医学护理 医学检验 药学论文 畜牧兽医 中医学 临床医学 外科学 内科学 生物制药 基础医学 预防卫生 肿瘤论文 儿科学论文 妇产科 遗传学 其他医学
经济论文
国际贸易 市场营销 财政金融 农业经济 工业经济 财务审计 产业经济 交通运输 房地产经济 微观经济学 政治经济学 宏观经济学 西方经济学 其他经济 发展战略论文 国际经济 行业经济 证券投资论文 保险经济论文
法学论文
民法 国际法 刑法 行政法 经济法 宪法 司法制度 法学理论 其他法学
计算机论文
计算机网络 软件技术 计算机应用 信息安全 信息管理 智能科技 应用电子技术 通讯论文
会计论文
预算会计 财务会计 成本会计 会计电算化 管理会计 国际会计 会计理论 会计控制 审计会计
文学论文
中国哲学 艺术理论 心理学 伦理学 新闻 美学 逻辑学 音乐舞蹈 喜剧表演 广告学 电视电影 哲学理论 世界哲学 文史论文 美术论文
管理论文
行政管理论文 工商管理论文 市场营销论文 企业管理论文 成本管理论文 人力资源论文 项目管理论文 旅游管理论文 电子商务管理论文 公共管理论文 质量管理论文 物流管理论文 经济管理论文 财务管理论文 管理学论文 秘书文秘 档案管理
社科论文
三农问题 环境保护 伦理道德 城镇建设 人口生育 资本主义 科技论文 社会论文 工程论文 环境科学