日期:2023-01-24 阅读量:0次 所属栏目:智能科技
中国目前侧重于打造平台、培育企业、构建市场、激励创新等方面,对于监管原则、监管体系和监管机构建设,基本没有部署。
大众一般认为,新技术的研发是难度最大的,应用及监管与研发相比难度就会低很多。但对于将深远影响人类社会运营方式的人工智能来说,情况或许正好相反。
人工智能的潜在缺陷与控制
目前基于人工智能科技所开发的自动控制、模式识别和机器学习系统,其实都是人工智能领域非常初级的部分,往往需要研发团队针对实际应用场景设置重要先决条件,以降低人工智能系统的判别难度并提高准确率。当各种极客型的技术人员大开脑洞采用人工智能技术研发各种黑科技时,他们的关注范围是非常聚焦的,即按照最优条件下设想人工智能的应用范围和场景,较少考虑相关技术在复杂条件甚至人为滥用的情况下面临的困境。这往往也为人工智能潜在的不当使用埋下了伏笔。
人工智能作为信息化系统,一定会受到自身设计的局限和开发质量的影响。再加上人工智能在识别和判断时需要基于人工设置和历史数据,通过精心设计的训练过程才能得到基于概率的判别结果。所以对于人工智能系统,在特定前提或应用场景下作出错误决策是100%会出现的。作为政府和监管部门,面临的第一个重要问题就是系统错误决策所引起的财产损失甚至人身伤亡该如何判定责任与承担赔偿,甚至要能够提出合理的原则,区分哪些错误决策是小概率事件本身引发的,哪些错误决策是由于系统设计、训练数据和训练过程存在问题所导致的。
2016年2月14日,上路试验已经六年的谷歌自动驾驶汽车第一次由于系统“误判”导致了交通事故。谷歌公司表示自动驾驶汽车在这次轻微车祸中承担“部分责任”。由此可见,当时的谷歌自动驾驶系统在特定场景下触发了一个错误决策。可以想象,当自动驾驶汽车全面行驶在大街小巷时,系统的微小错误导致的责任事故会基于巨大的汽车保有量而放大成为一个引人注目的数字。由此而引起的责任划定和赔偿也会由于人工智能和人类行为的混合作用而变得异常复杂。
另一个广为人知的应用缺陷就是公平性问题。2016年哈佛大学肯尼迪学院发布的分析报告指出,目前针对犯罪倾向性预测的人工智能系统,无论技术人员如何调整机器学习的策略和算法,人种肤色都成为无法抹去的高优先识别变量。人工智能系统评估结果出现了明显的对黑人群体的偏见,这是现阶段人工智能技术手段无法避免的,也是人工智能系统广泛应用于现有社会环境并为社会大众所接受的一个重要的障碍。
在以上问题没有经过实践验证的法律支持和监管框架管理下,人工智能的全面应用很有可能带来相关领域社会活动的混乱并造成意想不到的后果。
逐步建立的人工智能监管
美国政府对于人工智能的广泛应用和相关监管框架一直保持关注,并在特定领域开始小范围的实践。
以人工智能领域目前相对成熟且应用前景广阔的自动驾驶为例,企业能够尽快推进自动驾驶技术开发的重要原因,是在制度方面得到了美国政府的大力支持。
2012年5月,美国内华达州汽车管理局为谷歌自动驾驶汽车发放了美国首张自动驾驶车辆许可证,此前内华达州议会通过了允许自动驾驶车辆上路的法条。八个月后谷歌又在加利福尼亚州取得了许可证。随之而来,奥迪和丰田也先后在美国的一些州拿到了实验许可证并开展公路测试。一时间,美国成为各国企业争先开展自动驾驶的试验田,加速了自动驾驶技术的成熟。
虽然美国交通管理部门积极配合自动驾驶技术的测试和路试,但是对于正式的应用许可还是采用非常审慎的态度。2014年10月,加州车辆管理局同时颁发了29张自动驾驶汽车公共道路测试许可证,分别给了谷歌、戴姆勒、大众三家公司,获得许可的条件之一是人可以随时干预汽车驾驶,以确保在人工智能广泛测试和安全性之间取得平衡。
加州车辆管理局2015年12月提出了一项监管草案,要求所有自动驾驶汽车的驾驶座上必须始终乘坐一名拥有驾照的人士,并要求汽车在设计方面必须拥有方向盘、油门踏板、制动踏板等传统机动车具备的基本操控装置,以便具有驾驶资质的人在无人驾驶汽车失灵时可随时接管汽车的操作。在草案细则中,加州还规定了自动驾驶的三年试用期。消费者可以通过租赁的方式从制造商处获得自动驾驶汽车,但制造商需要跟踪记录消费者的驾驶情况,把汽车性能指标和驾驶记录递交机动车辆管理局。
可以看到,美国的交通部门在放行自动驾驶技术时是逐步进行,并尽量确保过渡阶段监管规则的连续性。尽管谷歌等自动驾驶技术公司向公众抱怨,政府过于严厉的监管和相对谨慎的态度阻碍了自动驾驶技术向实用水平的快速发展,但这是监管部门职责所在,他们必须保护公众在享受新技术成果的同时,避免潜在技术缺陷导致的伤害。今年1月,美国运输部长Anthony Foxx表示,将在六个月内出台自动驾驶汽车指导原则。美国高速公路交通安全管理局(NTHSA)也表示,为了加速自动驾驶汽车的发展,该机构将放弃一些目前针对自动驾驶汽车的安全要求。
收益和风险前瞻
2016年5月3日,白宫的副首席技术官埃德·费尔顿宣布,白宫将组织一系列有关人工智能收益与风险的研讨,“为人工智能的未来而准备”。
此次人工智能领域的系列研讨包括以下内容:
2016年5月24日,西雅图:与人工智能相关的法律与监管事务;
2016年6月7日,华盛顿:人工智能与社会福利;
2016年6月28日,匹兹堡:人工智能的安全与控制;
2016年7月7日,纽约:近期的人工智能技术对社会和经济的影响。
此次人工智能领域的研讨,一方面涵盖了从立法到监管原则的确定,为政府全面管理人工智能确立法理依据和管理边界;另一方面,也将深入探讨人工智能有可能存在的缺陷以及相应的安全控制原则。此外,研讨视角不仅面向具体的监管框架,同时还包含了对就业、社会福利、经济发展的长远影响的分析。
中国目前侧重于打造平台、培育企业、构建市场、激励创新等方面,对于监管原则、监管体系和监管机构建设,基本没有部署。
大众一般认为,新技术的研发是难度最大的,应用及监管与研发相比难度就会低很多。但对于将深远影响人类社会运营方式的人工智能来说,情况或许正好相反。
人工智能的潜在缺陷与控制
目前基于人工智能所开发的自动控制、模式识别和机器学习系统,其实都是人工智能领域非常初级的部分,往往需要研发团队针对实际应用场景设置重要先决条件,以降低人工智能系统的判别难度并提高准确率。当各种极客型的技术人员大开脑洞采用人工智能技术研发各种黑科技时,他们的关注范围是非常聚焦的,即按照最优条件下设想人工智能的应用范围和场景,较少考虑相关技术在复杂条件甚至人为滥用的情况下面临的困境。这往往也为人工智能潜在的不当使用埋下了伏笔。
人工智能作为信息化系统,一定会受到自身设计的局限和开发质量的影响。再加上人工智能在识别和判断时需要基于人工设置和历史数据,通过精心设计的训练过程才能得到基于概率的判别结果。所以对于人工智能系统,在特定前提或应用场景下作出错误决策是100%会出现的。作为政府和监管部门,面临的第一个重要问题就是系统错误决策所引起的财产损失甚至人身伤亡该如何判定责任与承担赔偿,甚至要能够提出合理的原则,区分哪些错误决策是小概率事件本身引发的,哪些错误决策是由于系统设计、训练数据和训练过程存在问题所导致的。
2016年2月14日,上路试验已经六年的谷歌自动驾驶汽车第一次由于系统“误判”导致了交通事故。谷歌公司表示自动驾驶汽车在这次轻微车祸中承担“部分责任”。由此可见,当时的谷歌自动驾驶系统在特定场景下触发了一个错误决策。可以想象,当自动驾驶汽车全面行驶在大街小巷时,系统的微小错误导致的责任事故会基于巨大的汽车保有量而放大成为一个引人注目的数字。由此而引起的责任划定和赔偿也会由于人工智能和人类行为的混合作用而变得异常复杂。
另一个广为人知的应用缺陷就是公平性问题。2016年哈佛大学肯尼迪学院发布的分析报告指出,目前针对犯罪倾向性预测的人工智能系统,无论技术人员如何调整机器学习的策略和算法,人种肤色都成为无法抹去的高优先识别变量。人工智能系统评估结果出现了明显的对黑人群体的偏见,这是现阶段人工智能技术手段无法避免的,也是人工智能系统广泛应用于现有社会环境并为社会大众所接受的一个重要的障碍。
在以上问题没有经过实践验证的法律支持和监管框架管理下,人工智能的全面应用很有可能带来相关领域社会活动的混乱并造成意想不到的后果。
逐步建立的人工智能监管
美国政府对于人工智能的广泛应用和相关监管框架一直保持关注,并在特定领域开始小范围的实践。
以人工智能领域目前相对成熟且应用前景广阔的自动驾驶为例,企业能够尽快推进自动驾驶技术开发的重要原因,是在制度方面得到了美国政府的大力支持。
2012年5月,美国内华达州汽车管理局为谷歌自动驾驶汽车发放了美国首张自动驾驶车辆许可证,此前内华达州议会通过了允许自动驾驶车辆上路的法条。八个月后谷歌又在加利福尼亚州取得了许可证。随之而来,奥迪和丰田也先后在美国的一些州拿到了实验许可证并开展公路测试。一时间,美国成为各国企业争先开展自动驾驶的试验田,加速了自动驾驶技术的成熟。
虽然美国交通管理部门积极配合自动驾驶技术的测试和路试,但是对于正式的应用许可还是采用非常审慎的态度。2014年10月,加州车辆管理局同时颁发了29张自动驾驶汽车公共道路测试许可证,分别给了谷歌、戴姆勒、大众三家公司,获得许可的条件之一是人可以随时干预汽车驾驶,以确保在人工智能广泛测试和安全性之间取得平衡。
加州车辆管理局2015年12月提出了一项监管草案,要求所有自动驾驶汽车的驾驶座上必须始终乘坐一名拥有驾照的人士,并要求汽车在设计方面必须拥有方向盘、油门踏板、制动踏板等传统机动车具备的基本操控装置,以便具有驾驶资质的人在无人驾驶汽车失灵时可随时接管汽车的操作。在草案细则中,加州还规定了自动驾驶的三年试用期。消费者可以通过租赁的方式从制造商处获得自动驾驶汽车,但制造商需要跟踪记录消费者的驾驶情况,把汽车性能指标和驾驶记录递交机动车辆管理局。
可以看到,美国的交通部门在放行自动驾驶技术时是逐步进行,并尽量确保过渡阶段监管规则的连续性。尽管谷歌等自动驾驶技术公司向公众抱怨,政府过于严厉的监管和相对谨慎的态度阻碍了自动驾驶技术向实用水平的快速发展,但这是监管部门职责所在,他们必须保护公众在享受新技术成果的同时,避免潜在技术缺陷导致的伤害。今年1月,美国运输部长Anthony Foxx表示,将在六个月内出台自动驾驶汽车指导原则。美国高速公路交通安全管理局(NTHSA)也表示,为了加速自动驾驶汽车的发展,该机构将放弃一些目前针对自动驾驶汽车的安全要求。
收益和风险前瞻
2016年5月3日,白宫的副首席技术官埃德·费尔顿宣布,白宫将组织一系列有关人工智能收益与风险的研讨,“为人工智能的未来而准备”。
此次人工智能领域的系列研讨包括以下内容:
2016年5月24日,西雅图:与人工智能相关的法律与监管事务;
2016年6月7日,华盛顿:人工智能与社会福利;
2016年6月28日,匹兹堡:人工智能的安全与控制;
2016年7月7日,纽约:近期的人工智能技术对社会和经济的影响。
此次人工智能领域的研讨,一方面涵盖了从立法到监管原则的确定,为政府全面管理人工智能确立法理依据和管理边界;另一方面,也将深入探讨人工智能有可能存在的缺陷以及相应的安全控制原则。此外,研讨视角不仅面向具体的监管框架,同时还包含了对就业、社会福利、经济发展的长远影响的分析。
作者:李军 来源:财经 2016年17期
本文链接:http://www.qk112.com/lwfw/jsjlw/zhinengkeji/231474.html上一篇:智能集成计算机数控关键技术
下一篇:人工智能还能做什么