欢迎光临112期刊网!
网站首页 > 论文范文 > 医学论文 > 基础医学 > 基于无线传感技术的医学检验设备自动控制方法论文

基于无线传感技术的医学检验设备自动控制方法论文

日期:2023-01-06 阅读量:0 所属栏目:基础医学


  摘要:传统的自动控制方法,其控制信号极易被限制,导致数据传输能力有限、动态指令无法实现,因此提出基于无线传感技术的医学检验设备自动控制方法。该方法利用BP神经网络,获取医学检验设备自动检验规律;通过设置通讯条件,设置医学设备自动控制逻辑;基于无线传感技术建立信号接发网络拓扑结构,剔除控制信号限制条件;依据医学设备与电信号之间的关系,制定设备分级检验过程的自动控制方法。实验结果表明与文献方法相比,所提出自动控制方法的控制限号不被限制,传输动态指令的能力更强、控制效果更好。


  关键词:无线传感技术;医学检验设备;自动化检验规律;控制逻辑


  0引言


  为了验证医疗设备的智能化应用效果,学界对医学检验设备展开自动化控制研究[12]。文献[3]采用模糊PID控制算法,结合半波电压自动控制技术,实现高精度自动调节调制器半波电压,将自动控制系统运用于电光调制器,使该调制器的偏置电压一直处于调制特性曲线的中点,并对高传输速率调制进行实验。该方法的调制信号能够不失真的传输,有效抑制半波电压漂移问题,但该方法未获取检验设备自动检验规律,其动态指令无法实现。文献[4]设计了一种环形低速风洞自动控制系统。该系统运用PLC作为主控单元,依据静压差和风速的关联,并自动采集并计算空气温度、大气压力、静压差,采用PID控制模块控制变频器,结合控制电动机的转速变化情况,自动输出环形低速风速。该方法能够实现风速传感器自动化检测,其传输动态指令较强,但该方法未建立信号接发网络拓扑结构,其控制信号易被限制。文献[5]采用深度Q值网络算法,结合神经网络及强化学习技术,依据得到的传感器信息训练神经网络决策,完成自动小车的控制。该方法能够依据传输动态指令有效控制自动小车,但其数据传输能力有限。


  因此针对传统方法目前存在的问题,提出基于无线传感技术的医学检验设备自动控制方法。无线传感技术将类型与特征不同的电信号综合处理,通过感应与控制形成一个归一化、且具有分析与判别能力的传感器网络,实现对信号的完整输出。基于无线传感技术的自动控制方法,充分利用该技术动态拓扑网络结构、以及强有力的信号传输能力,解决传统控制方法的现有问题。该自动控制方法的提出,不仅解决传统方法信号输出被限制的难题,还针对复杂的设备检验原理、检验流程制定合理的控制逻辑,为国家医学设备的完善与发展提供科学的研究依据,为医学检验提供强力的技术支持。


  1基于无线传感技术的医学检验设备自动控制方法


  1.1获取医学检验设备自动检验规律


  以传统医学检验设备自动控制方法为研究前提,此次提出的基于无线传感技术的自动控制方法,需要预先研究其自动检验规律,根据该规律制定合理的設备控制逻辑。因此利用BP神经网络学习并存储大量输入、输出数据的映射关系,获取医学检验设备自动检验规律。已知BP神经网络的基本结构,如图1所示。


  根据上图可知,BP神经网络由输入层、隐层、输出层组合而成,且层与层之间的神经元相互连接。假设神


  经元的个数为n,每个神经元对应的输入参数为xi,输出参数为yi,则神经元的输入值可描述为:X=x1,x2,…,xnT,P=p1,p2,…,pnT则表示神经元之间的连接强度,即连接权重,则输出值如式(1)。


  yi=g∑PTX-α


  (1)


  式中:


  ∑PTX表示神经元的输入数据总和;α表示神经元的偏置值。当∑PTX-α>0时,


  则神经元被激活,此时激活后的神经元被激励函数g进行处理,得到上式的计算结果[3]。神经元的基本结构模型,如图2所示。


  根据上式输入医学检验设备的检验一般参数,计算神经网络某一节点的数据输出值,得到计算结果yi,对该结果进行n次迭代,输出第i个节点的平方误差,并获取误差平均值。根据该值结合输入层与输出层的神经元梯度,得到权值修正结果,以此获取医学检验设备的自动检验规律[4]。医学检验设备的部分规律获取结果,如表1所示。


  根据上表中的数据,该将医学检验设备的控制参数均匀分配,由此获取规律分析结果如式(2)。


  y′=yi-minyimaxyi-minyi


  (2)


  式中:y′表示最终得到的规律运行数据;maxyi表示最大


  输出值;minyi表示最小输出值,以此实现对医学检验设备自动检验规律数据的获取。


  1.2设置医学检验设备自动控制逻辑


  实现医学检验设备的自动控制,需要将获取到的规律性输出数据为依据,设置医学检验设备自动控制逻辑。该逻辑的设置前提,需要满足以下条件:


  第一个条件是要允许医疗设备与控制PC机实时通讯;第二条是要满足医学检验设备的远程控制要求,包括本地控制和联网控制[5]。本地控制、联网控制下,医学检验设备与控制PC机的电脑实例,如图3所示。


  当满足上述自动控制条件时,重新设置设备与控制系统之间的通讯方式,与医学设备之间建立联系,并初始化;该自动控制通过重新设定讯通方式,将控制指令通过图3中的控制实例传输给医学检验设备;设备根据接收指令,给自动控制程序一个信息反馈,并执行输入的检验指令;同时医学检验设备在执行检验指令的同时,将所有事件均实时反馈给自动控制中心,该通讯逻辑的限制参数如式(3)。


  k=y′a+c+λ


  (3)


  式(3)中:k表示逻辑限制参数;a表示限制基本条件;c表示限制附加条件;λ表示一个固态常量。根据参数k约束自动控制逻辑的边界极值,自动控制与设备之间的通讯逻辑[6],如图4所示。


  根据上图4中的通讯逻辑,设置自动控制与医学检验设备之间的数据接收与传输方式,当设备接收控制中心发送检验执行指令时,设备会给控制中心一个响应信号,以此确定与控制中心的实时通讯,确保自动控制操作过程实时可控。


  1.3基于无线传感技术建立信号接发网络拓扑结构


  医学检验设备自动控制模块的实现,需要根据设置的通讯逻辑建立信号接发网络拓扑结构,实现对传输信号的可靠控制。已知当操作人员向医学检验设备输入检验指令时,该设备的通行模块,会按照通讯逻辑,向中央控制中心输送执行指令电信号,因此采用无线传感技术,根据指令执行信号归一化处理结果,建立信号接发网络拓扑结构。假设水平与垂直方向上的信号采集频率在0.5Hz~1500Hz之间,标定的数据输出结果与设备获取信息的速度之间的公式如式(4)。


  fyi=1-2×;V1-VOUTV1-V2


  (4)


  式(4)中:fyi表示输出信号与医学设备之间的标定结果;V1表示最高输出电压;V2表示设备传感器的最低输出电压;VOUT表示归一化处理电信号时的实时电压[7]。将归一化后的标定结果进行运算,实现无线传感技术下,传输信号自动控制网络结构的建立,如图5所示。


  根据上述设定流程,使用快速傅叶里变换方法,对加速信号进行处理,该变化核心参数如式(5)。


  Wκ=∫∞-∞wte-jκtdt/fyi


  (5)


  式中:


  κ表示迭代计算的控制量;wt表示时间为t的权重函数。已知复数加法次数为log2m*m,复数乘法次数为log2m*m/2,则利用无线传感技术建立的信息接发网络控制量如式(6)。


  Wb=1N∑N-1n=0Wκej2πNnφ


  (6)


  式中:Wb表示网络控制节点序列;N表示阈值;φ表示变换参量。根据上式公式,实现对医学设备控制网络的建立[8]。


  1.4制定设备分级检验过程的自动控制方法


  根据已经建立的控制信号接发网络,对设备的各个阶段进行自动控制设定。对医学检验设备的分级检验程序和检验类型进行定义,如式(7)。


  s=u1ε1+u2ε2u1+u2+u


  (7)


  简化并整理上述公式,得到式(8)。


  u=u1×;ε1s-1+u2×;ε2s-1


  (8)


  式中:s表示医学检验设备的实时检测量;u1表示控制中心发出信号量;u2表示接收中心的信号接收量;ε1表示发出信号的交互性系数;ε2表示接收信号的交互性系数[9]。此时的医学检验设备与控制信号之间的关系,如图6所示。


  根据上图中显示的对应关系,计算设备自动控制循环操作配比如式(9)。


  q=1-T·;uWb


  (9)


  式中:q表示根据网络节点序列获得的控制强度配比结果;T表示设备一个检验阶段的周期参数。将上述配比输入到控制PC机管理医学检验设备的控制平臺中,试运行医学设备,当检验结果符合医学设备常规检验结果,则完成对医学检验设备自动控制方法的设定,实现基于无线传感技术的设备自动控制[10]。


  2实验


  提出对比实验,将基于无线传感技术的自动控制方法,与传统的自动控制方法进行对比,分析两种方法对于多种动态拓扑指令的适用效果。


  2.1实验准备


  搭建实验测试平台,此次实验测试选用监测系统,对医学检验设备的自动控制过程和控制结果进行测试。该检测系统的监测分析界面,如图7所示。


  将监测系统与医学检测设备之间建立网络连接,确保监测系统可以获取设备的实时运行状态。选取的实验测试对象,如图8所示。


  上图中,设备1作为实验组测试对象;设备2作为对照组测试对象;设备3则作为替补使用对象。将上述实验对象与控制计算机相连接,形成完整的实验测试环境。设置实验参数,分别利用两种自动控制方法控制两组实验测试对象。数据为此次实验测试基本参数,如表2所示。


  上表中的数据,为此次实验需要测试的运行动态指令。为保证实验测试结果真实可靠,分别将两种控制方法下的测试对象试运行15min,没有问题后开始实验。


  2.2结果分析


  此次实验测试中,设置100组数据应用,每组数据100MB大小,设置标准数据输出量曲线,分别采用文献[3]方法和所提方法对输出数据进行控制,并将控制曲线与标准值曲线进行对比,所得曲线对比结果,如图9所示。


  根据图9可知,所提方法与标准值曲线高度拟合,文献[3]方法偏离标准曲线十分明显,由此可见,所提方法在数据输出量的控制方面,比文獻[3]方法高出很多。将所提出控制方法以设备1为实验组测试对象,其测试结果记为实验A组;文献[3]方法将设备B作为对照组测试对象,其测试结果记为实验B组。对比测试实验结果,如图10所示。


  根据上述两组对此测试结果可知,在同样的测试时间、同样的动态执行指令的测试条件下,基于无线传统技术的自动控制方法,严格遵循动态指令控制医学检验设备的程序运行,根据曲线走势可知,实验A组曲线与期望曲线极为近似,可见该控制方法并没有限制设备的控制信号,对动态指令信号的传输能力极佳,从而使控制效果接近理想效果。而传统的控制方法,其曲线走势与期望曲线相似程度极低,可见传统的自动控制方法受不同的动态指令影响,其控制信号被限制,对动态指令的数据传输能力差,因此无法保证控制效果可以达到理想状态。


  3总结


  此次提出的自动控制方法,在传统控制方法的基础上,通过分析设备在检验过程中的规律,设置自动控制与医学设备之间的通讯逻辑,通过无线传感技术控制传输信号,以此制定更加合理的医学设备自动控制方法。但该方法并没有进一步阐述通讯逻辑的控制方式,今后的分析与研究,可以着重对逻辑控制下的通信方法进行详细描述,实现对医疗检验设备自动控制方法的全方面研究。

本文链接:http://www.qk112.com/lwfw/yxlw/jichuyixue/90390.html

论文中心更多

发表指导
期刊知识
职称指导
论文百科
写作指导
论文指导
论文格式 论文题目 论文开题 参考文献 论文致谢 论文前言
教育论文
美术教育 小学教育 学前教育 高等教育 职业教育 体育教育 英语教育 数学教育 初等教育 音乐教育 幼儿园教育 中教教育 教育理论 教育管理 中等教育 教育教学 成人教育 艺术教育 影视教育 特殊教育 心理学教育 师范教育 语文教育 研究生论文 化学教育 图书馆论文 文教资料 其他教育
医学论文
医学护理 医学检验 药学论文 畜牧兽医 中医学 临床医学 外科学 内科学 生物制药 基础医学 预防卫生 肿瘤论文 儿科学论文 妇产科 遗传学 其他医学
经济论文
国际贸易 市场营销 财政金融 农业经济 工业经济 财务审计 产业经济 交通运输 房地产经济 微观经济学 政治经济学 宏观经济学 西方经济学 其他经济 发展战略论文 国际经济 行业经济 证券投资论文 保险经济论文
法学论文
民法 国际法 刑法 行政法 经济法 宪法 司法制度 法学理论 其他法学
计算机论文
计算机网络 软件技术 计算机应用 信息安全 信息管理 智能科技 应用电子技术 通讯论文
会计论文
预算会计 财务会计 成本会计 会计电算化 管理会计 国际会计 会计理论 会计控制 审计会计
文学论文
中国哲学 艺术理论 心理学 伦理学 新闻 美学 逻辑学 音乐舞蹈 喜剧表演 广告学 电视电影 哲学理论 世界哲学 文史论文 美术论文
管理论文
行政管理论文 工商管理论文 市场营销论文 企业管理论文 成本管理论文 人力资源论文 项目管理论文 旅游管理论文 电子商务管理论文 公共管理论文 质量管理论文 物流管理论文 经济管理论文 财务管理论文 管理学论文 秘书文秘 档案管理
社科论文
三农问题 环境保护 伦理道德 城镇建设 人口生育 资本主义 科技论文 社会论文 工程论文 环境科学